Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38647957

RESUMO

Polycystic ovary syndrome (PCOS) is one of the most common endocrine anomalies among females of reproductive age, highlighted by hyperandrogenism. PCOS is multifactorial as it can be associated with obesity, insulin resistance, low-grade chronic inflammation, and dyslipidemia. PCOS also leads to dysbiosis by lowering microbial diversity and beneficial microbes, such as Faecalibacterium, Roseburia, Akkermenisa, and Bifidobacterium, and by causing a higher load of opportunistic pathogens, such as Escherichia/Shigella, Fusobacterium, Bilophila, and Sutterella. Wherein, butyrate producers and Akkermansia participate in the glucose uptake by inducing glucagon-like peptide-1 (GLP-1) and glucose metabolism, respectively. The abovementioned gut microbes also maintain the gut barrier function and glucose homeostasis by releasing metabolites such as short-chain fatty acids (SCFAs) and Amuc_1100 protein. In addition, PCOS-associated gut is found to be higher in gut-microbial enzyme ß-glucuronidase, causing the de-glucuronidation of conjugated androgen, making it susceptible to reabsorption by entero-hepatic circulation, leading to a higher level of androgen in the circulatory system. Overall, in PCOS, such dysbiosis increases the gut permeability and LPS in the systemic circulation, trimethylamine N-oxide (TMAO) in the circulatory system, chronic inflammation in the adipose tissue and liver, and oxidative stress and lipid accumulation in the liver. Thus, in women with PCOS, dysbiosis can promote the progression and severity of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). To alleviate such PCOS-associated complications, microbial therapeutics (probiotics and fecal microbiome transplantation) can be used without any side effects, unlike in the case of hormonal therapy. Therefore, this study sought to understand the mechanistic significance of gut microbes in PCOS and associated comorbidities, along with the role of microbial therapeutics that can ease the life of PCOS-affected women.

2.
Cancer Sci ; 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613358

RESUMO

Triple-negative breast cancer (TNBC) patients harboring wild-type breast cancer susceptibility gene 1 (BRCA1) account for most TNBC patients but lack adequate targeted therapeutic options. Although radiotherapy (RT) is the primary treatment modality for TNBC patients, radioresistance is one of the major challenges. RT-induced increase in cathepsin S (CTSS) causes radioresistance through suppressing BRCA1-mediated apoptosis of tumor cells, which was induced by CTSS-mediated degradation of BRCA1. Targeting CTSS may provide a novel therapeutic opportunity for TNBC patients. Publicly available data and human tissue microarray slides were analyzed to investigate the relationship between CTSS and BRCA1 in breast cancer patients. A CTSS enzyme assay and in silico docking analysis were conducted to identify a novel CTSS inhibitor. RO5461111 was used first to confirm the concept of targeting CTSS for radiosensitizing effects. The MDA-MB-231 TNBC cell line was used for in vitro and in vivo assays. Western blotting, promoter assay, cell death assay, clonogenic survival assay, and immunohistochemistry staining were conducted to evaluate novel CTSS inhibitors. CTSS inhibitors were further evaluated for their additional benefit of inhibiting cell migration. A novel CTSS inhibitor, TS-24, increased BRCA1 protein levels and showed radiosensitization in TNBC cells with wild-type BRCA1 and in vivo in a TNBC xenograft mouse model. These effects were attributed by BRCA1-mediated apoptosis facilitated by TS-24. Furthermore, TS-24 demonstrated the additional effect of inhibiting cell migration. Our study suggests that employing CTSS inhibitors for the functional restoration of BRCA1 to enhance RT-induced apoptosis may provide a novel therapeutic opportunity for TNBC patients harboring wild-type BRCA1.

3.
Lab Anim Res ; 40(1): 14, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589968

RESUMO

BACKGROUND: Gastrodia elata Blume (GEB), a traditional medicinal herb, has been reported to have pharmacological effect including protection against liver, neuron and kidney toxicity. However, explanation of its underlying mechanisms remains a great challenge. This study investigated the protective effects of GEB extract on vancomycin (VAN)-induced nephrotoxicity in rats and underlying mechanisms with emphasis on the anti-oxidative stress, anti-inflammation and anti-apoptosis. The male Sprague-Dawley rats were randomly divided three groups: control (CON) group, VAN group and GEB group with duration of 14 days. RESULTS: The kidney weight and the serum levels of blood urea nitrogen and creatinine in the GEB group were lower than the VAN group. Histological analysis using hematoxylin & eosin and periodic acid Schiff staining revealed pathological changes of the VAN group. Immunohistochemical analysis revealed that the expression levels of N-acetyl-D-glucosaminidase, myeloperoxidase and tumor necrosis factor-alpha in the GEB group were decreased when compared with the VAN group. The number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells, phosphohistone and malondialdehyde levels were lower in the GEB group than VAN group. The levels of total glutathione in the GEB group were higher than the VAN group. CONCLUSIONS: The findings of this study suggested that GEB extract prevents VAN-induced renal tissue damage through anti-oxidation, anti-inflammation and anti-apoptosis.

4.
Infect Dis Ther ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607524

RESUMO

INTRODUCTION: Regdanvimab, a monoclonal antibody pharmaceutical, is the first Korean drug approved for treating coronavirus disease 2019 (COVID-19). We analyzed the therapeutic efficacy of regdanvimab in patients with the COVID-19 delta variant infection. METHODS: We retrospectively reviewed the electronic medical records of patients hospitalized at two Korean tertiary COVID-19 hospitals with COVID-19 delta variant infection between May 26, 2021, and January 30, 2022. To analyze the therapeutic efficacy of regdanvimab, the patients were divided into regdanvimab and non-regdanvimab groups and were 1:1 propensity-score (PS)-matched on age, severity at admission, and COVID-19 vaccination history. RESULTS: Of 492 patients, 262 (53.3%) and 230 (46.7%) were in the regdanvimab and non-regdanvimab groups, respectively. After PS matching the groups on age, severity at admission, and COVID-19 vaccination history, each group comprised 189 patients. The 30-day hospital mortality rates (0.0% vs. 1.6%, p = 0.030), proportions of patients with exacerbated conditions to severe/critical/died (9.5% vs. 16.4%, p = 0.047), proportions who received oxygen therapy because of pneumonia exacerbation (7.4% vs. 16.4%, p = 0.007), and proportions with a daily National Early Warning Score ≥ 5 from hospital day 2 were significantly lower in the regdanvimab group. CONCLUSIONS: We showed that regdanvimab reduced the exacerbation rates of conditions and mortality in patients with the COVID-19 delta variant infection. Thus, it is recommended to streamline the drug approval system during epidemics of new variant viruses to improve the availability and usage of therapeutics for patients. To facilitate this, relevant institutional support is required.

5.
Plants (Basel) ; 13(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38475541

RESUMO

Plants select microorganisms from the surrounding bulk soil, which act as a reservoir of microbial diversity and enrich a rhizosphere microbiome that helps in growth and stress alleviation. Plants use organic compounds that are released through root exudates to shape the rhizosphere microbiome. These organic compounds are of various spectrums and technically gear the interplay between plants and the microbial world. Although plants naturally produce organic compounds that influence the microbial world, numerous efforts have been made to boost the efficiency of the microbiome through the addition of organic compounds. Despite further crucial investigations, synergistic effects from organic compounds and beneficial bacteria combinations have been reported. In this review, we examine the relationship between organic compounds and beneficial bacteria in determining plant growth and biotic and abiotic stress alleviation. We investigate the molecular mechanism and biochemical responses of bacteria to organic compounds, and we discuss the plant growth modifications and stress alleviation done with the help of beneficial bacteria. We then exhibit the synergistic effects of both components to highlight future research directions to dwell on how microbial engineering and metagenomic approaches could be utilized to enhance the use of beneficial microbes and organic compounds.

6.
Mycobiology ; 52(1): 68-84, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415173

RESUMO

A rapid decline of Abies koreana has been reported in most of the natural alpine habitats in Korea. It is generally accepted that this phenomenon is due to climate change even though no clear conclusions have been drawn. Most research has focused on abiotic environmental factors, but studies on the relationships between A. koreana and soil fungal microbiomes are scarce. In this study, the rhizoplane and rhizosphere fungal communities in the alive and dead Korean fir trees from its three major natural habitats including Mt. Deogyu, Mt. Halla, and Mt. Jiri in Korea were investigated to identify specific soil fungal groups closely associated with A. koreana. Soil fungal diversity in each study site was significantly different from another based on the beta diversity calculations. Heat tree analysis at the genus level showed that Clavulina, Beauveria, and Tomentella were most abundant in the healthy trees probably by forming ectomycorrhizae with Korean fir growth and controlling pests and diseases. However, Calocera, Dacrymyces, Gyoerffyella, Hydnotrya, Microdochium, Hyaloscypha, Mycosymbioces, and Podospora were abundant in the dead trees. Our findings suggested that Clavulina, Beauveria, and Tomentella are the major players that could be considered in future reforestation programs to establish ectomycorrhizal networks and promote growth. These genera may have played a significant role in the survival and growth of A. koreana in its natural habitats. In particular, the genus Gyoerffyella may account for the death of the seedlings. Our work presented exploratory research on the specific fungal taxa associated with the status of A. koreana.

7.
Korean J Radiol ; 25(2): 199-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38288899

RESUMO

OBJECTIVE: This study aimed to compare therapeutic efficacy and technical outcomes between adjustable electrode (AE) and conventional fixed electrode (FE) for radiofrequency ablation (RFA) of benign thyroid nodules. MATERIALS AND METHODS: Between 2013 and 2021, RFA was performed on histologically proven benign thyroid nodules. For the AE method, AE length ≥ 1 cm with higher power and < 1 cm with lower power were utilized for ablating feeding vessels and nodules, especially those near anatomical structures, respectively. The therapeutic efficacy (volume reduction rate [VRR], complication rate, and regrowth rate) and technical outcomes (total energy delivery, ablated volume/energy, RFA time, and ablated volume/time) of FE and AE were compared. Continuous parameters were compared using a two-sample t-test or Mann-Whitney U test, and categorical parameters were compared using a chi-squared test or Fisher's exact test. RESULTS: A total of 182 nodules (FE: 92 vs. AE: 90) in 173 patients (mean age ± standard deviation, 47.0 ± 14.7 years; female, 90.8% [157/173]; median follow-up, 726 days [interquartile range, 441-1075 days]) were analyzed. The therapeutic efficacy was comparable, whereas technical outcomes were more favorable for AE. Both electrodes demonstrated comparable overall median VRR (FE: 92.4% vs. AE: 84.9%, P = 0.240) without immediate major complications. Overall regrowth rates were comparable between the two groups (FE: 2.2% [2/90] vs. AE: 1.1% [1/90], P > 0.99). AE demonstrated a shorter median RFA time (FE: 811 vs. AE: 627 seconds, P = 0.009). Both delivered comparable median energy (FE: 42.8 vs. AE: 29.2 kJ, P = 0.069), but AE demonstrated higher median ablated volume/energy and median ablated volume/time (FE: 0.2 vs. AE: 0.3 cc/kJ, P < 0.001; and FE: 0.7 vs. AE: 1.0 cc/min, P < 0.001, respectively). CONCLUSION: Therapeutic efficacy between FE and AE was comparable. AE demonstrated better technical outcomes than FE in terms of RFA time, ablated volume/energy, and ablated volume/time.


Assuntos
Ablação por Cateter , Ablação por Radiofrequência , Nódulo da Glândula Tireoide , Humanos , Feminino , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/cirurgia , Nódulo da Glândula Tireoide/patologia , Resultado do Tratamento , Estudos Retrospectivos , Ablação por Radiofrequência/métodos , Eletrodos , Ablação por Cateter/métodos
8.
Microbiol Resour Announc ; 13(2): e0068123, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236017

RESUMO

In this report, we present the whole-genome sequences of Beauveria bassiana KNU-101, a widely recognized entomopathogenic fungus used as a biopesticide. The genome was assembled using a hybrid assembly approach, resulting in 13 scaffolds with a total size of 35,638,224 bp.

9.
iScience ; 27(1): 108657, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205250

RESUMO

Although countless gut microbiome studies on colitis using mouse models have been carried out, experiments with small sample sizes have encountered reproducibility limitations because of batch effects and statistical errors. In this study, dextran-sodium-sulfate-induced microbial dysbiosis index (DiMDI) was introduced as a reliable dysbiosis index that can be used to assess the state of microbial dysbiosis in DSS-induced mouse models. Meta-analysis of 189 datasets from 11 independent studies was performed to construct the DiMDI. Microbial dysbiosis biomarkers, Muribaculaceae, Alistipes, Turicibacter, and Bacteroides, were selected through four different feature selection methods and used to construct the DiMDI. This index demonstrated a high accuracy of 82.3% and showed strong robustness (88.9%) in the independent cohort. Therefore, DiMDI may be used as a standard for assessing microbial imbalance in DSS-induced mouse models and may contribute to the development of reliable colitis microbiome studies in mouse experiments.

10.
Environ Sci Pollut Res Int ; 31(5): 8240-8253, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175519

RESUMO

Pesticides, protect crops but can harm the environment and human health when used without caution. This study evaluated the impact of propiconazole, a fungicide that acts on fungal cell membranes, on soil microbiome abundance, diversity, and functional profile, as well as soil dehydrogenase activity (DHA). The study conducted microcosm experiments using soil samples treated with propiconazole and employed next-generation sequencing (MiSeq) and chromatographic approaches (GC-MS/MS) to analyze the shift in microbial communities and propiconazole level, respectively. The results showed that propiconazole significantly altered the distribution of microbial communities, with notable changes in the abundance of various bacterial and fungal taxa. Among soil bacterial communities, the relative abundance of Proteobacteria and Planctomycetota increased, while that of Acidobacteria decreased after propiconazole treatment. In the fungal communities, propiconazole increased the abundance of Ascomycota and Basidiomycota in the treated soil, while that of Mortierellomycota was reduced. Fungicide application further triggered a significant decrease in DHA over time. Analysis of the functional profile of bacterial communities showed that propiconazole significantly affected bacterial cellular and metabolic pathways. The carbon degradation pathway was upregulated, indicating the microbial detoxification of the contaminant in the treated soil. Our findings suggest that propiconazole application has a discernible impact on soil microbial communities, which could have long-term consequences for soil health, quality, and function.


Assuntos
Fungicidas Industriais , Microbiota , Triazóis , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Solo/química , Espectrometria de Massas em Tandem , Bactérias/metabolismo , Oxirredutases , Microbiologia do Solo
11.
J Microbiol Biotechnol ; 34(2): 296-305, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38073404

RESUMO

Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.


Assuntos
Antifúngicos , Bacillus , Antifúngicos/farmacologia , Antifúngicos/química , Bacillus/genética , Bactérias/metabolismo , Lipopeptídeos/metabolismo
13.
Plant Foods Hum Nutr ; 79(1): 1-11, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117392

RESUMO

Soybean-based fermented foods are commonly consumed worldwide, especially in Asia. These fermented soy-products are prepared using various strains of Bacillus, Streptococcus, Lactobacillus, and Aspergillus. The microbial action during fermentation produces and increases the availability of various molecules of biological significance, such as isoflavones, bioactive peptides, and dietary fiber. These dietary bio active compounds are also found to be effective against the metabolic disorders such as obesity, diabetes, and cardiovascular diseases (CVD). In parallel, soy isoflavones such as genistein, genistin, and daidzin can also contribute to the anti-obesity and anti-diabetic mechanisms, by decreasing insulin resistance and oxidative stress. The said activities are known to lower the risk of CVD, by decreasing the fat accumulation and hyperlipidemia in the body. In addition, along with soy-isoflavones fermented soy foods such as Kinema, Tempeh, Douchi, Cheonggukjang/Chungkukjang, and Natto are also rich in dietary fiber (prebiotic) and known to be anti-dyslipidemia, improve lipolysis, and lowers lipid peroxidation, which further decreases the risk of CVD. Further, the fibrinolytic activity of nattokinase present in Natto soup also paves the foundation for the possible cardioprotective role of fermented soy products. Considering the immense beneficial effects of different fermented soy products, the present review contextualizes their significance with respect to their anti-obesity, anti-diabetic and cardioprotective roles.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Alimentos Fermentados , Isoflavonas , Alimentos de Soja , Doenças Cardiovasculares/prevenção & controle , Isoflavonas/farmacologia , Obesidade/prevenção & controle , Diabetes Mellitus/prevenção & controle , Fibras na Dieta , Fermentação
14.
Front Plant Sci ; 14: 1301698, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116158

RESUMO

In a plant-microbe symbiosis, the host plant plays a key role in promoting the association of beneficial microbes and maintaining microbiome homeostasis through microbe-associated molecular patterns (MAMPs). The associated microbes provide an additional layer of protection for plant immunity and help in nutrient acquisition. Despite identical MAMPs in pathogens and commensals, the plant distinguishes between them and promotes the enrichment of beneficial ones while defending against the pathogens. The rhizosphere is a narrow zone of soil surrounding living plant roots. Hence, various biotic and abiotic factors are involved in shaping the rhizosphere microbiome responsible for pathogen suppression. Efforts have been devoted to modifying the composition and structure of the rhizosphere microbiome. Nevertheless, systemic manipulation of the rhizosphere microbiome has been challenging, and predicting the resultant microbiome structure after an introduced change is difficult. This is due to the involvement of various factors that determine microbiome assembly and result in an increased complexity of microbial networks. Thus, a comprehensive analysis of critical factors that influence microbiome assembly in the rhizosphere will enable scientists to design intervention techniques to reshape the rhizosphere microbiome structure and functions systematically. In this review, we give highlights on fundamental concepts in soil suppressiveness and concisely explore studies on how plants monitor microbiome assembly and homeostasis. We then emphasize key factors that govern pathogen-suppressive microbiome assembly. We discuss how pathogen infection enhances plant immunity by employing a cry-for-help strategy and examine how domestication wipes out defensive genes in plants experiencing domestication syndrome. Additionally, we provide insights into how nutrient availability and pH determine pathogen suppression in the rhizosphere. We finally highlight up-to-date endeavors in rhizosphere microbiome manipulation to gain valuable insights into potential strategies by which microbiome structure could be reshaped to promote pathogen-suppressive soil development.

15.
Medicine (Baltimore) ; 102(47): e36023, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38013383

RESUMO

RATIONALE: Posterior reversible encephalopathy syndrome is a neurological condition characterized by headache, convulsions, altered consciousness, and visual disturbance with specific radiological features, which is characterized by contrast enhancement in the occipital lobe on T2-weighted image. We report a case of sudden visual impairment of both eyes 6 days after childbirth diagnosed as postpartum preeclampsia and posterior reversible encephalopathy syndrome (PRES) through radiological examination. PATIENT CONCERNS: A 31-year-old female patient with headache and visual disturbance visited the clinic. DIAGNOSIS: Visual acuity was light perception in the right eye and hand motion in the left eye; pupillary light reflections of both eyes were normal. In the field of view test, the waveform was not observed in the defect pattern visual field power test, and the amplitude was greatly reduced in the visual field test. 1+ proteinuria was observed on urine test and magnetic resonance imaging showed contrast enhancement under both parietal and occipital cortex. INTERVENTIONS: Hospitalization was done for blood pressure control and examination of related disease under suspicion of PRES caused by postpartum preeclampsia. OUTCOMES: Four weeks after diagnosis, vision and visual field defects recovered to normal, and the previously observed lesion on magnetic resonance imaging completely improved 3 months after the initial visit, and it was diagnosed as PRES. LESSONS: PRES in postpartum preeclampsia can cause rapid vision and symptoms, visual field loss, and accurate follow-up diagnosis with relevant imaging and clinical patterns can improve vision.


Assuntos
Encefalopatias , Síndrome da Leucoencefalopatia Posterior , Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Adulto , Síndrome da Leucoencefalopatia Posterior/diagnóstico por imagem , Síndrome da Leucoencefalopatia Posterior/etiologia , Pré-Eclâmpsia/diagnóstico , Encefalopatias/complicações , Imageamento por Ressonância Magnética/efeitos adversos , Transtornos da Visão/complicações , Período Pós-Parto , Cefaleia/complicações
16.
Environ Int ; 181: 108268, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37897871

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs.


Assuntos
Cianobactérias , Microcystis , Humanos , Antibacterianos/farmacologia , Disbiose/genética , Cianobactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
17.
Water Res ; 244: 120473, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604018

RESUMO

Quorum quenching (QQ) has effectively prevented biofouling in membrane bioreactors (MBRs) employing isolated QQ bacterial strains. However, the influence of QQ on the microbial population still needs to be fully understood. This research aims to analyze the microbial population in MBRs over an extended period (>250 days) under different conditions, such as varying aeration intensities and doses of QQ bacteria, QQ media, and types of feed. Results show that no significant changes occurred in the structure and diversity of the microbial community in the mixed liquor and biofilm due to QQ treatment. Canonical correspondence analysis did reveal that the microbial communities were strongly influenced by feed types and phases. The microbial community composition varied between bacterial habitats (i.e., mixed liquor and biofilm), showing the two dominant phyla Proteobacteria and Bacteroidota in the former and Proteobacteria and Chloroflexi in the latter. The co-occurrence network analysis indicated that the biofilm (with 163 edges) in the MBR fed with real wastewater exhibited a more intricate network than the biofilm (with 53 edges) in the MBR fed with synthetic wastewater. With QQ, the biofilm exhibited more positive edges than negative ones. The phylogenetic investigation of communities showed that QQ barely affects functional gene-related quorum sensing (e.g., bacterial chemotaxis, motility proteins, and secretion) in mixed liquor but in biofilms at relatively large QQ doses (> 75 mg/L BH4). This research sheds light on the bacterial QQ's role in reducing MBR biofouling and provides crucial insights into its underlying mechanisms.


Assuntos
Incrustação Biológica , Microbiota , Percepção de Quorum , Águas Residuárias , Filogenia , Reatores Biológicos/microbiologia , Incrustação Biológica/prevenção & controle , Bactérias , Proteobactérias , Membranas Artificiais
18.
Microorganisms ; 11(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37630666

RESUMO

An intermittent fasting regimen is widely perceived to lead to various beneficial health effects, including weight loss, the alleviation of insulin resistance, and the restructuring of a healthy gut microbiome. Because it shares certain commonalities with this dietary intervention, Ramadan fasting is sometimes misinterpreted as intermittent fasting, even though there are clear distinctions between these two regimens. The main purpose of this study is to verify whether Ramadan fasting drives the same beneficial effects as intermittent fasting by monitoring alterations in the gut microbiota. We conducted a study involving 20 Muslim individuals who were practicing Ramadan rituals and assessed the composition of their gut microbiomes during the 4-week period of Ramadan and the subsequent 8-week period post-Ramadan. Fecal microbiome analysis was conducted, and short-chain fatty acids (SCFAs) were assessed using liquid-chromatography-mass spectrometry. The observed decrease in the levels of SCFAs and beneficial bacteria during Ramadan, along with the increased microbial diversity post-Ramadan, suggests that the daily diet during Ramadan may not provide adequate nutrients to maintain robust gut microbiota. Additionally, the notable disparities in the functional genes detected through the metagenomic analysis and the strong correlation between Lactobacillus and SCFAs provide further support for our hypothesis.

19.
Plants (Basel) ; 12(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37446960

RESUMO

Centella asiatica is a traditional herbaceous plant with numerous beneficial effects, widely known for its medicinal and cosmetic applications. Maximizing its growth can lead to beneficial effects, by focusing on the use of its active compounds. The use of plant growth-promoting rhizobacteria (PGPR) is known to be an alternative to chemical fertilizers. In this study, we used the PGPR Priestia megaterium HY-01 to increase the yield of C. asiatica. In vitro assays showed that HY-01 exhibited plant growth-promoting activities (IAA production, denitrification, phosphate solubilization, and urease activity). Genomic analyses also showed that the strain has plant growth-promoting-related genes that corroborate with the different PGP activities found in the assays. This strain was subsequently used in field experiments to test its effectiveness on the growth of C. asiatica. After four months of application, leaf and root samples were collected to measure the plant growth rate. Moreover, we checked the rhizosphere microbiome between the treated and non-treated plots. Our results suggest that treatment with Hyang-yak-01 not only improved the growth of C. asiatica (leaf length, leaf weight, leaf width, root length, root width, and chlorophyll content) but also influenced the rhizosphere microbiome. Biodiversity was higher in the treated group, and the bacterial composition was also different from the control group.

20.
Front Microbiol ; 14: 1203317, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520352

RESUMO

Toxic blooms of cyanobacteria, which can produce cyanotoxins, are prevalent in freshwater, especially in South Korea. Exposure to cyanotoxins via ingestion, inhalation, and dermal contact may cause severe diseases. Particularly, toxic cyanobacteria and their cyanotoxins can be aerosolized by a bubble-bursting process associated with a wind-driven wave mechanism. A fundamental question remains regarding the aerosolization of toxic cyanobacteria and cyanotoxins emitted from freshwater bodies during bloom seasons. To evaluate the potential health risk of the aerosolization of toxic cyanobacteria and cyanotoxins, the objectives of this study were as follows: 1) to quantify levels of microcystin in the water and air samples, and 2) to monitor microbial communities, including toxic cyanobacteria in the water and air samples. Water samples were collected from five sites in the Nakdong River, South Korea, from August to September 2022. Air samples were collected using an air pump with a mixed cellulose ester membrane filter. Concentrations of total microcystins were measured using enzyme-linked immunosorbent assay. Shotgun metagenomic sequencing was used to investigate microbial communities, including toxic cyanobacteria. Mean concentrations of microcystins were 960 µg/L ranging from 0.73 to 5,337 µg/L in the water samples and 2.48 ng/m3 ranging from 0.1 to 6.8 ng/m3 in the air samples. In addition, in both the water and air samples, predominant bacteria were Microcystis (PCC7914), which has a microcystin-producing gene, and Cyanobium. Particularly, abundance of Microcystis (PCC7914) comprised more than 1.5% of all bacteria in the air samples. This study demonstrates microbial communities with genes related with microcystin synthesis, antibiotic resistance gene, and virulence factors in aerosols generated from cyanobacterial bloom-affected freshwater body. In summary, aerosolization of toxic cyanobacteria and cyanotoxins is a critical concern as an emerging exposure route for potential risk to environmental and human health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...